

Sulfonlyureas

• Disadvantages:

- Weight gain
- Hypoglycemia
- High rates of secondary failure
- Blunting of ischemic preconditioning response?

TZDs

Advantages:

- Good effect on A1c
- Excellent reduction in insulin resistance
- Reduction of intra-abdominal fat (liver and visceral fat)
- Potential beneficial effect on beta cells
- No hypoglycemia
- Improvement on vascular function animal, in vitro data and on markers of endothelial dysfunction and inflammation
- Oral medication

Comparison of the Incretins

	GLP-1	GIP				
Site of majority of production	L cells (ileum and colon)	K cells (duodenum and jejunum)				
Secretion in T2DM	Yes	No				
Glucagon postprandially	Yes	No				
Food intake	Yes	No				
Slows gastric emptying	Yes	No				
Promotes expansion of beta-cell mass	Yes	Yes				
Promotes insulin biosynthesis	Yes	Yes				
Adapted from Drucker DJ. <i>Diabetes Care</i> . 2003;26:2929-2940.						

Meta-analysis of DPP-4 Inhibitors Mean A1C reduction: -0.74% (-0.85 to -0.62) Significant reduction in postprandial glucose and cry modest decrease of fasting plasma glucose Neutral effect on weight and lipids No hypoglycemia Side effects Nasopharyngitis 1.2 RR (Cl, 1.0–1.4) Urinary tract infection 1.5 RR (Cl, 1.0–2.2) Headache 1.4 RR (Cl, 1.1–1.7)

Summary of Incretin Therapies

5		Reduction	Change	Effect			
Incretin Mimetics: GLP-1 Agonists							
Exenatide	Twice daily injection	Up to -0.86%	Ļ	Nausea			
Liraglutide	Once daily injection	Up to -0.75%	Ŷ	Nausea			
Incretin Enhancers: DPP-4 Inhibitors							
Vildagliptin	Oral	Up to 0.8%	\leftrightarrow	_			
Sitagliptin	Oral	Up to 0.8%	\leftrightarrow	-			
Saxagliptin	Oral	Up to 0.8%	\leftrightarrow				
Linagliptin	Oral	Up to 0.8%	\leftrightarrow	_			

Incretin Mimetics and DPP-4 Inhibitors					
Properties / Effect	GLP-1 Analogs	DPP-4 Inhibitors			
Glucose-dependent insulin secretion	Yes	Yes			
Restoration of biphasic insulin responses	Yes	Not tested			
Suppression of glucagon secretion	Yes	Yes			
Slowing of gastric emptying	Yes	Marginal			
Effect on body weight	Weight loss	Weight neutral			
Differentiation of islet precursor cells into β cells (animal data)	Yes	Unknown			
Predominant adverse event	Nausea	None observed			
Administration	Subcutaneous , QD,BID	Oral, QD/BID			
BID: Twice-daily dosing; QD: Once-daily dosing.					
Abbreviated from Drucker DJ et al. <i>Lancet.</i> 2006;368:1696-1705.					

GLP-1R Agonists: Unanswered Questions

- Optimal pharmacokinetics?
- Intermittent vs continuous administration?
- Effects of sustained vs transient levels?
- Responders vs nonresponders?
- Data in real clinical practice?
- Islet mass and β-cell function in humans?
- Safety and immunogenicity?

Pharmacologic options for Type 2 DM

Insulin Resistance

- Biguanides
- Thiazolidinediones (TZD)

- Sulfonylureas (SU)
- Meglitinides
- DPP4 inhibitors
- GLP-1 analogs
- Insulin

Other Mechanisms

- Alpha glucosidase inhibitors
- Bile Acid Sequestrants
- Bromocriptine

Advantages:

- Effective in reducing postprandial hyperglycemia
- Neutral effect on weight, lipids and BP
- Oral medication
- Positive results for acarbose in the Stop-NIDDM Study (DM prevention and Reduction of CV events)

Alpha Glucosidase Inhibitors:

• Disadvantages:

- Modest reduction in A1c levels
- Need to be taken 3 times a day
- Rare liver enzyme elevations
- GI side effects
- Expensive

The Target: Bile Acids—From Detergents to Hormones

- Bile acids have long been known to facilitate digestion and absorption of lipids in the small intestine
- Recently, it has been demonstrated that bile acids also fulfill the criteria for hormones as they activate specific receptors including nuclear receptors (FXR) and G-protein coupled receptor (TGR5), and cell signaling pathways in the liver and GI tract
- Activation of nuclear receptors and cell signaling pathways results in modulation of multiple metabolic pathways including: bile acid, triglyceride, cholesterol, energy, and glucose homeostasis
- Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of the molecules returning from the intestines to the liver following a meal

Goldfine AB. *Curr Opin Cardiol.* 2008;23:502-511. Levy P. *Endocr Pract.* 2008;14:644-647.

Bile Acid sequestrants - Colesevalam

• Disadvantages:

- Modest effect on A1c (0.5%)
- Unclear mechanism of action to reduce glucose levels
- Main side effects: constipation, indigestion, nausea
- Six tablets a day
- No long term data
- Expensive

The VMH

- Has rich connections with other hypothalamic nuclei
- Plays a major regulatory role in the peripheral metabolic activities
- Functions as a central glucose sensor
- Is able to induce hepatic glucose production via the autonomic and endocrine system

Bromocriptine

- Increases peripheral insulin sensitivity, decreases hepatic glucose production, reduces lipolysis,
- Can be used as monotherapy or as adjunct therapy with metformin, SU, TZDs
- A1c reduction of 0.2 to 0.9% along with small changes in Tg and BP
- Dose 1.6 4.8 mg qd (0.8 mg tablets) every morning
- Side effects: Nausea in 10% of patients.
 Hypoglycemia depending on concomitant therapies
- Longer term data needed

SGLT-2 Inhibitors

• Advantages:

- Good effect on A1c levels
- No frequent hypoglycemia
- Potential weight loss
- Oral medication

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

